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Abstract. In this paper, we first extend the well-known inequalities to the case of sector
matrices. We also explore the adjointness of operator inequalities with binary operations
for sector matrices. As a result of our exploration, we establish four distinct inequalities:
a matrix inequality, a unitarily invariant norm inequality, a singular value inequality, and
a determinant inequality. For example, we demonstrate that if σ1 and σ2 are non-zero
connections, and if A, B, and C belong to Sα, such that

R (Aσ1(Bσ2C)) ≤ cos4(α) R ((Aσ1B)σ2(Aσ1C)) ,

then
R (Aσ∗

1(Bσ∗
2C)) ≥ cos4(α) R ((Aσ∗

1B)σ∗
2(Aσ∗

1C)) .
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1. Introduction and Background
Let (H, ⟨., .⟩) be a complex Hilbert space and let B(H) be the C∗− algebra of bounded

linear operators acting on H. A selfadjoint operator A ∈ B(H) is called positive if ⟨Ax, x⟩ ⩾ 0
for all vectors x ∈ Cn. We write A ≥ 0 if A is positive. For selfadjoint operators A,B ∈ B(H)
a partial order is defined as A ≥ B if A−B ≥ 0. Let Mn denote the set of all n× n complex
matrices. A Hermitian matrix A ∈ Mn is said to be positive semidefinite, denoted by A ≥ 0,
if ⟨Ax, x⟩ ⩾ 0 for all vectors x ∈ Cn. It is positive definite if it is positive semidefinite
and invertible, we will write A > 0, the class of positive definite matrices is denoted by
M+

n . An operator A ∈ B(H) is called accretive if in its Cartesian or Toeplitz decomposition,
A = RA + iIA, RA is positive definite (RA > 0), where RA = A+A∗

2 , IA = A−A∗

2i . The
numerical range of A ∈ Mn is defined as

W (A) = {x∗Ax : x ∈ Cn, ∥x∥ = 1}.
The sector region Sα is defined as follows:

Sα = {z ∈ C : Rz > 0, |Iz| ≤ (Rz) tanα}.
The given statement W (A) ⊂ Sα for some 0 ≤ α < π

2 , says that if the numerical range of a
matrix A is a subset of a sector region Sα in the complex plane, then A is called a sectorial
matrix and is denoted by A ∈ Sα. Furthermore, since 0 /∈ Sα, then each member of Sα is
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invertible. It is also stated that a sectorial matrix is necessarily accretive.
An operator mean σ in the sense of Kubo-Ando [8] is defined by an operator monotone
function f : (0,∞) → (0,∞) with f(1) = 1 (briefly we write f ∈ m) as
(1.1) AσB = A1/2f(A−1/2BA−1/2)A1/2,

for positive invertible operators A and B. The function f that satisfies the conditions for the
operator mean σ is called the ”representing function” of σ. Some important operator means
are given as follows:

• Arithmetic mean: A∇B = (A+B)/2.
• t-Weighted arithmetic mean: A∇tB = (1− t)A+ tB. (0 < t < 1)

• Harmonic mean: A!B =
(
(A−1 +B−1)/2

)−1.
• t-Weighted harmonic mean: A!tB = [(1− t)A−1 + tB−1]−1. (0 < t < 1)

• Geometric mean: A♯B = A1/2(A−1/2BA−1/2)1/2A1/2.
• t-Weighted geometric mean: A♯tB = A1/2(A−1/2BA−1/2)tA1/2. (0 < t < 1)

Definition 1.1. ([14]), Let σ be an operator mean with representing function f . The operator
mean with representing function f(t−1)−1 is called the adjoint of σ and denoted by σ∗.
Formula (1.1) gives an explicit form on the adjoint,

Aσ∗B = (A−1σB−1)−1 for invertible A and B.

For a function f : (0,∞) → (0,∞), we define the adjoint of f by

f∗(x) =
1

f(1/x)
, x > 0.

It states that if a nonzero connection σ is associated with an operator monotone function
f , then the adjoint of σ, denoted by σ∗, is associated with the operator monotone function
f∗. This means that the adjoint of a connection preserves the operator monotonicity of the
function associated with it.
Recall that, if f ∈ m, then f∗ ∈ m and so if A ∈ Sα, then f∗(A) ∈ Sα.
The adjoint formation is involutive, (σ∗)∗ = σ. The adjoint mean of the t-weighted arithmetic
mean is t-weighted harmonic mean, i.e. ∇∗

t =!t and the t-weighted geometric mean is self
adjoint, i.e. (♯t)

∗ = ♯t. Where 0 < t < 1.
We will use the following lemmas in our main results proof:

Lemma 1.2. ([2]), Let A,B ∈ Sα. Then AσB ∈ Sα and
RAσRB ≤ R(AσB) ≤ sec2(α) (RAσRB).

Lemma 1.3. ([2]), Let f ∈ m and A ∈ Sα for some 0 ≤ α < π
2 . Then

f(RA) ≤ R(f(A)) ≤ sec2(α) f(RA).

The article refers the reader to other articles (cited as [5, 10, 11, 12, 13, 15]) for further
information on this topic.

Lemma 1.4. ([7]), Let α ≥ 1. Then
(i) If f : (0,∞) → (0,∞) is an operator monotone function, then

f(αt) ≤ αf(t).
(ii) If g : (0,∞) → (0,∞) is an operator monotone decreasing function, then

g(αt) ≥ 1

α
g(t).
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In [4], Chansangiam has proven that if f is increasing or decreasing, it has influenced f∗

and certain operator inequalities are adjointable where A,B > 0:

Lemma 1.5. ([4]), Let σ1 and σ2 be binary operations for invertible positive operators
and f, g, h : (0,∞) → (0,∞) be continuous functions. Then the following statements are
equivalent:

(i) f(Aσ1B) ≤ g(A)σ2h(B) for all A ≥ B > 0.
(ii) f∗(Aσ∗

1B) ≥ g∗(A) σ∗
2 h∗(B) for all A ≥ B > 0.

Lemma 1.6. ([4]), Let σ1 and σ2 be nonzero connections. Then the following statements are
equivalent:

(i) Aσ1(Bσ2C) ≤ (Aσ1B)σ2(Aσ1C) for all A,B,C ≥ 0.
(ii) Aσ∗

1(Bσ∗
2C) ≥ (Aσ∗

1B)σ∗
2(Aσ

∗
1C) for all A,B,C ≥ 0.

Lemma 1.7. ([1]), Let A and B be two strictly positive operators and 0 ≤ t ≤ 1. If
f : (0,∞) → (0,∞) is an operator monotone decreasing function, then

f(A)!tf(B) ≥ f(A∇tB).

Lemma 1.8. ([7]), Let A,B be two strictly positive operators, 0 ≤ t ≤ 1 and σt be an arbitrary
mean between ∇t and !t. If f : (0,∞) → (0,∞) is an operator monotone decreasing function,
then

f(A)σtf(B) ≤ f(A!tB).

2. main results

This section is started by an accretive version of Lemma 1.5. The proofs of Theorems
2.1 and 2.4 involve using certain properties of accretive operators and applying them to the
accretive versions of the inequalities.

Theorem 2.1. Let σ1 and σ2 be binary operations for invertible accretive operators and
f, g, h ∈ m be continuous functions. If A,B ∈ Sα such that

(2.1) sec4(α) R (f(Aσ1B)) ≤ R (g(A)σ2h(B)) ,

then
R (g∗(A) σ∗

2 h∗(B)) ≤ sec4(α) R (f∗(A σ∗
1 B)) .

Proof. Assume (2.1) and consider A,B ∈ Sα

f (RAσ1RB) ≤ f (R (Aσ1B)) ( by Lemma 1.2)

≤ R (f (Aσ1B)) ( by Lemma 1.3)

≤ cos4(α) R (g(A)σ2h(B)) ( by (2.1))

≤ cos2(α) (R(g(A))σ2R(h(B))) ( by Lemma 1.2)

≤ g(RA)σ2h(RB) ( by Lemma 1.2).

Now by Lemma 1.5,

(2.2) f∗ (RA σ∗
1 RB) ≥ g∗(RA) σ∗

2 h∗(RB).
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Then
R (f∗(Aσ∗

1B)) ≥ f∗ (R(Aσ∗
1B)) ( by Lemma 1.3)

≥ f∗(RA σ∗
1 RB) ( by Lemma 1.2)

≥ g∗(RA) σ∗
2 h∗(RB) ( by (2.2))

≥ cos2(α) (R(g∗(A)) σ∗
2 R(h∗(B))) ( by Lemma 1.3)

≥ cos4(α) R (g∗(A) σ∗
2 h∗(B)) ( by Lemma 1.2).

□

According to the first part of the proof of Theorem 2.1, we obtain the following result.

Corollary 2.2. Let σ1 and σ2 be binary operations for invertible accretive operators and
f, g, h ∈ m be continuous functions. If A,B ∈ Sα such that

f(RAσ1RB) ≤ g(RA)σ2h(RB),

then
R (g∗(A) σ∗

2 h∗(B)) ≤ sec4(α) R (f∗(A σ∗
1 B)) .

Remark 2.3. Let A,B ∈ Sα and 0 ≤ t ≤ 1. If f : (0,∞) → (0,∞) is an operator monotone
decreasing function, then f∗ is also. By applying Lemma 1.7 for f∗, we have

f∗((1− t)RA+ t (RB)) ≤
[
(1− t)(f∗(RA))−1 + t(f∗(RB)

)−1
]−1,

therefore by Corollary 2.2, we get
R ((1− t)f(A) + t f(B)) ≤ sec4(α) R

(
f([(1− t)A−1 + tB−1]−1)

)
.

Therefore, Theorem 2.1 is an extension of [1, Remark 2.6].

Theorem 2.1 can be considered an extension of Theorem 2 in [4]. By applying similar
strategies, we can easily prove the following theorem, which is the reverse of Theorem 2.1.

Theorem 2.4. Let σ1 and σ2 be binary operations for invertible accretive operators and
f, g, h ∈ m be continuous functions. If A,B ∈ Sα such that
(2.3) sec4(α) R (g(A)σ2h(B)) ≤ R(f (Aσ1B)) for all A,B ∈ Sα,

then
R (f∗(Aσ∗

1B)) ≤ sec4(α) R (g∗(A) σ∗
2 h∗(B)) .

Proof. Assume (2.3) and consider A,B ∈ Sα,
g(RA)σ2h(RB) ≤ R (g(A))σ2R (h(B)) (by Lemma 1.3)

≤ R (g(A)σ2h(B)) (by Lemma 1.2)

≤ cos4(α)R (f(Aσ1B)) (by (2.3))
≤ cos2(α)f(R (Aσ1B)) (by Lemma 1.3)

≤ f(RAσ1RB) (by Lemmas 1.4 and 1.2 ),

then by Lemma 1.5,
(2.4) f∗(RA σ∗

1 RB) ≤ g∗(RA) σ∗
2 h∗(RB).



ADJOINTATIONS OF OPERATOR INEQUALITIES FOR SECTOR MATRICES 55

and therefore
R (f∗(Aσ∗

1B)) ≤ sec2(α) f∗ (R(Aσ∗
1B)) (by Lemma 1.3)

≤ sec2(α) f∗ (sec2(α) (RA σ∗
1 RB)

)
(by Lemma 1.2)

≤ sec4(α) f∗ (RA σ∗
1 RB) (by Lemma 1.4)

≤ sec4(α) (g∗(RA) σ∗
2 h∗(RB)) (by (2.4))

≤ sec4(α) (R(g∗(A)) σ∗
2 R(h∗(B))) (by Lemma 1.3)

≤ sec4(α) R (g∗(A) σ∗
2 h∗(B)) (by Lemma 1.2).

□
According to the first part of the proof of Theorem 2.4, we get the following useful corollary.

Corollary 2.5. Let σ1 and σ2 be binary operations for invertible accretive operators and
f, g, h ∈ m be continuous functions. If A,B ∈ Sα such that

g(RA)σ2h(RB) ≤ f (RAσ1RB) ,

then
R (f∗(Aσ∗

1B)) ≤ sec4(α) R (g∗(A) σ∗
2 h∗(B)) .

Proposition 2.6. Let A,B ∈ Sα, 0 ≤ t ≤ 1, and σt be an arbitrary mean between ∇t and !t.
If f : (0,∞) → (0,∞) is an operator monotone decreasing function, then
(2.5) R (f((1− t)A+ tB)) ≤ sec4(α) R (f(A) σ∗

t f(B)) .

Proof. Since f is an operator monotone decreasing, so is f∗. Applying Lemma 1.8 for f∗, we
get

f∗(RA)σtf
∗(RB) ≤ f∗

([
(1− t)R−1A+ tR−1B

]−1
)
,

therefore by Corollary 2.5, we have
R (f((1− t)A+ tB)) ≤ sec4(α) R (f(A) σ∗

t f(B)) .

□
Inequality (2.5) can be regarded as an extension of the known fact in [7, Lemma 2.4].

The following inequality has been proved by Lin [10]:
(2.6) R (A!tB) ≤ sec2(α) (RA!tRB) , 0 < t < 1.

Where A,B ∈ Sα.
The following proposition is an extension of (2.6).

Proposition 2.7. Let A,B ∈ Sα and f ∈ m. Then
(2.7) R (f(A!tB)) ≤ sec4(α) R (f(A)!tf(B)) ,

where 0 < t < 1.

Proof. By [2, (6.12)], recall that if f ∈ m, then
(1− t)f(RA) + tf(RB) ≤ f ((1− t)RA+ tRB) .

If f ∈ m, then f∗ ∈ m. Consequently
(1− t)f∗(RA) + tf∗(RB) ≤ f∗ ((1− t)RA+ tRB) .
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Finally by Corollary 2.5, we have
R (f(A!tB)) ≤ sec4(α) R (f(A)!tf(B)) ,

where 0 < t < 1. □

Next, we will give a relation between the harmonic and geometric means.

Proposition 2.8. Let A,B ∈ Sα and f ∈ m. Then
R (f(A!B)) ≤ sec4(α)R (f(A)♯f(B)) .

Proof. It is well known that if f ∈ m is a continuous function and A,B ∈ M+
n , then

(2.8) f(A)♯f(B) ≤ f (A∇B) .

Let A,B ∈ Sα. Using the (2.8) for f∗, we get
f∗(RA)♯f∗(RB) ≤ f∗ (RA∇RB) .

Therefore by Corollary 2.5, we have
R (f(A!B)) ≤ sec4(α)R (f(A)♯f(B)) .

□

Finally, we have proved the following inequality for mixed operator means.

Theorem 2.9. Let σ1 and σ2 be nonzero connections and A,B,C ∈ Sα. If
(2.9) R (Aσ1(Bσ2C)) ≤ cos4(α) R ((Aσ1B)σ2(Aσ1C)) ,

then
R (Aσ∗

1(Bσ∗
2C)) ≥ cos4(α) R ((Aσ∗

1B)σ∗
2(Aσ

∗
1C)) .

Proof. The property (2.9) and Lemma 1.2 together imply that,
RAσ1 (RBσ2RC) ≤ RAσ1 (R(Bσ2C))

≤ R (Aσ1(Bσ2C))

≤ cos4(α) R ((Aσ1B)σ2(Aσ1C))

≤ cos2(α) (R(Aσ1B)σ2R(Aσ1C))

≤ (RAσ1RB)σ2 (RAσ1RC) ,

now by Lemma 1.6,
(2.10) RA σ∗

1 (RB σ∗
2 RC) ≥ (RA σ∗

1 RB) σ∗
2 (RA σ∗

1 RC)

and consequently by Lemma 1.2 and (2.10), we get
R (Aσ∗

1(Bσ∗
2C)) ≥ RA σ∗

1 R(B σ∗
2 C)

≥ RA σ∗
1 (RB σ∗

2 RC)

≥ (RA σ∗
1 RB)σ∗

2 (RA σ∗
1 RC)

≥ cos2(α) (R(Aσ∗
1B)σ∗

2R(Aσ∗
1C))

≥ cos4(α) R ((Aσ∗
1B)σ∗

2(Aσ
∗
1C)) .

□
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Corollary 2.10. Let σ1 and σ2 be nonzero connections and A,B > 0. If
Aσ1(Aσ2B) ≤ Aσ2(Aσ1B),

then
Aσ∗

1(Aσ
∗
2B) ≥ Aσ∗

2(Aσ
∗
1B).

Proof. If we put A instead of B and B instead of C in Theorem 2.9, the desired result will
be obtained. □

3. Applications

Let us derive operator inequalities involving operator means by using the previous theorems.
The following lemma, helps us present the norm version of Proposition 2.6.

Lemma 3.1. ([3, 16]), Let A ∈ Sα. Then
∥RA∥ ≤ ∥A∥ ≤ sec(α) ∥RA∥.

for any unitarily invariant norm ∥.∥ on B(H).

Theorem 3.2. Let A,B ∈ Sα, 0 ≤ t ≤ 1 and σt be an arbitrary mean between ∇t and !t. If
f : (0,∞) → (0,∞) is an operator monotone decreasing function, then

∥f((1− t)A+ tB)∥ ≤ sec5(α) ∥f(A) σ∗
t f(B)∥,

for any unitarily invariant norm ∥.∥ on B(H).

Proof. Lemma 3.1 and Proposition 2.6, together imply that
∥f((1− t)A+ tB)∥ ≤ sec(α) ∥R (f((1− t)A+ tB)) ∥

≤ sec5(α) ∥R (f(A) σ∗
t f(B)) ∥

≤ sec5(α) ∥f(A) σ∗
t f(B)∥.

□

By applying the following lemma, we obtain the determinant version of Proposition 2.6.

Lemma 3.3. ([6, 9]), If A ∈ Sα, then
det(RA) ≤ |det(A)| ≤ secn(α) det(RA).

Theorem 3.4. Let A,B ∈ Sα, 0 ≤ t ≤ 1 and σt be an arbitrary mean between ∇t and !t. If
f : (0,∞) → (0,∞) is an operator monotone decreasing function, then

|det (f((1− t)A+ tB))| ≤ sec5n(α) |det (f(A) σ∗
t f(B))| .

Proof. By applying Lemma 3.3, Proposition 2.6, and the determinant definition, we get
|det (f((1− t)A+ tB))| ≤ secn(α) det (R (f((1− t)A+ tB)))

≤ sec5n(α) det (R (f(A) σ∗
t f(B)))

≤ sec5n(α) |det (f(A) σ∗
t f(B))| .

□

Using the following lemma, singular value versions of Proposition 2.6 can be obtained.
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Lemma 3.5. ([7]), Let A ∈ Sα. Then
λj(RA) ≤ sj(A) ≤ sec2(α) λj(RA), j = 1, . . . , n,

where sj and λj denote the jth largest singular value and eigenvalue of a matrix.

Theorem 3.6. Let A,B ∈ Sα, 0 ≤ t ≤ 1 and σt be an arbitrary mean between ∇t and !t. If
f : (0,∞) → (0,∞) is an operator monotone decreasing function, then

sj (f((1− t)A+ tB)) ≤ sec6(α) sj (f(A) σ
∗
t f(B)) .

Proof. Lemma 3.5 and Proposition 2.6, together imply that
sj (f((1− t)A+ tB)) ≤ sec2(α) λj (R (f((1− t)A+ tB)))

≤ sec6(α) λj (R (f(A) σ∗
t f(B)))

≤ sec6(α) sj (f(A) σ∗
t f(B)) .

□
It is well known that the numerical radius ω(A) of A ∈ Mn is defined by

ω(A) = sup{⟨Ax, x⟩ : x ∈ Cn, ∥x∥ = 1}.
When A ∈ S0, we have ω(A) = ∥A∥, and therefore ω(RA) = ∥RA∥. Bedrani et al. [2] showed
that if A ∈ Sα, then
(3.1) ω(RA) ≤ ω(A) ≤ sec(α) ω(RA).

Theorem 3.7. Let A,B ∈ Sα, 0 ≤ t ≤ 1 and σt be an arbitrary mean between ∇t and !t. If
f : (0,∞) → (0,∞) is an operator monotone decreasing function, then

ω (f((1− t)A+ tB)) ≤ sec5(α) ω (f(A) σ∗
t f(B)) .

Proof. By Proposition 2.6 and inequality (3.1), we get
ω (f((1− t)A+ tB)) ≤ sec(α) ω (R(f((1− t)A+ tB)))

≤ sec5(α) ω (R(f(A) σ∗
t f(B)))

≤ sec5(α) ω (f(A) σ∗
t f(B)) .

□
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